Textless NLP towards language processing from raw audio

Emmanuel Dupoux EHESS, META A https://cognitive-ml.fr

LREC 2022, Marseille

TEXTLESS NLP

What

Textless NLP

Spoken language generation

Training AI models directly from raw audio recordings - no text or labels

Fisher dataset Nguyen et al. (2022)

Spoken language is the primary means of human communication¹

Yet, internet services are text based and struggle to capture nuances and richness of the oral modality.

Generating spoken dialogues with AI using our latest model²

Our agents reproduce naturalistic turn taking behavior including laughter and backchanneling, which is important for smooth human/agents interactions.

TEXTLESS NLP

HOW

Self-supervised learning!

Evaluation

Zero Resource Speech Challenge (ZRC) series

https://www.zerospeech.com

Evaluation

learning

https://www.zerospeech.com

Evaluation

Chall.	Tasks	Train Data
2015	T1, T2	English (Buckeye 5h),
		Xitsonga (2h30)
2017	T1, T2	English (45h), French (24h),
		Mandarin (2h30), German
		(25h), Wolof (10h)
2019	T3.	English (15h+4h40), Indone-
		sian (15h+1h30)
2020	T1,T2,T3	reboot of ZR17, ZR19
2021a	T1,T4	English (Librispeech 960 or
		100)
2021b	T1.T4	idem plus speech coco

Zero Resource Speech Challenge (ZRC) series

https://www.zerospeech.com

The encoder

Audio Representation Learning

The encoder

Audio Representation Learning

ZRC TASK 1:

Learning representations that encode linguistic information, and disregard non linguistic ones

The encoder

Audio Representation Learning

ZRC TASK 1:

Learning representations that encode linguistic information, and disregard non linguistic ones

Evaluation: ABX discrimination

 $\frac{a \quad b \quad x}{bit_{T1} bet_{T1} bit_{T2}}$

d(a,x) < d(b,x) ?

The encoder

Audio Representation Learning

ZRC TASK 1:

Learning representations that encode linguistic information, and disregard non linguistic ones

Evaluation: ABX discrimination

d(a,x) < d(b,x) ?

Main idea: information compression

- Spectral information (MFCC): 20kbit/sec
- Telephone, speech codec: 8kbit/sec (2.5x reduction)
- Text (phonemes):
 50bits/sec (400x reduction !)

The encoder

Audio Representation Learning

Heck et al, 2015, 2017
 Chorowski et al. 2019
 Van den Oord, 2018; Kharitonov et al. 2020;
 Hsu et al, 2021
 Baevsky et al, 2020

Best models

Predictive

The encoder

Audio Representation Learning

Leaderboard

Dunbar, Hamilakis, Dupoux (submitted)

Dunba, Hamilakis, Dupoux (2022)

Acoustic Unit Discovery (discrete representation learning)

Nguyen et al (2022)

Acoustic Unit Discovery (discrete representation learning)

Nguyen et al (2022)

Acoustic Unit Discovery (discrete representation learning)

Acoustic Unit Discovery (discrete representation learning)

Acoustic Unit Discovery (discrete representation learning)

AA AH AO AW AY B

WELDERER SHITES SET THE SET OF TH

Nguyen et al (2022)

The language model

Spoken Language Modeling

ZRC Task 4 Learn the probabilistic distribution of speech

Evaluation:

Levels	Tasks
Syntactic	accept . judgment "they like" vs "they likes"
Lexical	spot-the-word "blick" vs "brick"

The language model

Spoken Language Modeling

Leaderboard

Nguyen et al (2022)

The language model

Spoken Language Modeling

Nguyen et al (2022)

The decoder

Discrete resynthesis

Dunbar, Hamilakis, Dupoux (2022)

The decoder

Discrete resynthesis

Lakhotia et al (2021). Generative spoken language modeling. TACL.

Correlation between PER and MOS, R=.90-.95

Putting all together

Putting all together

Lakhotia et al (2021). Generative spoken language modeling. TACL.

Unconditional generation (medium temperature)

Prosodic Generative Spoken Language Modeling

Expressive language modeling

Kharitonov et al (2021). Text-Free Prosody-Aware Generative Spoken Language Modeling; ACL

Conditional samples

Kharitonov et al (2021). Text-Free Prosody-Aware Generative Spoken Language Modeling. ACL

More samples: <u>https://speechbot.github.io/pgslm</u>

Speech-tospeech applications

Emotion conversion

Kreuk et akl (2021).

Dialogue modeling

Dialogue modeling

4 second prompt with real humans

Nguyen et al (2022) Generative Spoken Dialogue Modeling

Automatic continuation

TEXTLESS NLP

Challenges

Noise and variability of real-world audio¹

Meaningful segment discovery

1. CHIMES5. Trmal, Vincent, Watanabe , Barker (2018), Interspeech

Data collection & curation

Noise robust invariant representations

Data filtering

Data augmentation

Source separation

Noise robust invariant representations

Speaker normalisation

Domain adaptation

De Seyssel et al (2022). Interspeech

Word discovery

Something is wrong with frame based units!

System

CPC-big+km50+BERT-sma

CPC-big+km50+LSTM

CPC-small+km50+BERT

CPC-big+km50+BERT

Forced align BERT

Phone BERT

RoBERTa large

	sWUGGY	sBLIMP	sSIMI
			synth. libri.
a11	65.81	52.91	3.88 5.56
	65.94	53.02	3.02 0.06
	66.13	53.32	4.42 7.56
	66.22	52.89	7.35 6.66
	70.69	54.26	2.99 6.68
	70.50	54.61	8.96 -1.55
	75.56	56.14	6.25 8.72
	75.51	56.16	5.17 1.75
	92.19	63.72	7.92 4.54
	91.88	63.16	8.52 2.41
	97.90	66.78	9.86 16.11
	97.67	66.91	12.23 20.16
	96.58	81.56	32.28 28.96
	96.25	82.11	33.16 27.82

Nguyen et al (2021) The Zero Resource Speech Benchmark 2021: Metrics and baselines for unsupervised spoken language modeling

Word discovery

ZRC Task 2 Discover spoken terms and segment with it

Word discovery

ZRC Task 2 Discover spoken terms and segment with it

Dunbar, Hamilakis & Dupoux (2022)

Word discovery

ZRC Task 2 Discover spoken terms and segment with it

Dunbar, Hamilakis & Dupoux (2022)

Dataset collection

Questionnaire for the FISHER 2.0 dataset

tinyurl.com/3d7d9xmk

We need to define a new scalable way

LIBRI-LIGHT and VOX POPULI are large (>50k hours) but they are not very expressive.

FISHER, CALLHOME, and other conversational expressive and codatasets already exist but they are too small for current LM training

We propose to collect a new large (100k hours) open source dataset with a smartphone app, allowing different kinds of tasks (debate, story telling, collaborative tasks, open dialogue, etc).

Comments welcome!

We need to define a new way to collect expressive speech in a

TEXTLESS NLP

Why

Why it matters

TEXT-BASED SERVICES

- Search •
- Translate •
- Question & Answer ٠
- Recommend
- Describe •

Trend of research publications on text-based NLP

TEXTLESS NLP | Why

Why it matters

SPEECH TO SPEECH SERVICES

- Search
- Translate
- Question & Answer
- Recommend
- Describe

More inclusive

Most languages have no written presence on the web.

More expressive

Intonation, rhythm, sarcasms, laughters, yawning, etc.

More ubiquitous

Online games, local radios, podcasts, metaverse.

TEXTLESS NLP | Why

Related projects

Predicting language development

Opus 6kbps

Encodec 3kbps

TEXTLESS NLP

References

Cognitive machine learning team: https://cognitive-ml.fr/

Questionnaire for the **FISHER 2.0 dataset**

tinyurl.com/3d7d9xmk

Zero resource speech challenge: Now rolling submissions! <u>Review paper</u>: Dunbar, Hamilakis & Dupoux (2022). Self-supervised language learning from raw audio: Lessons from the Zero Resource Speech Challenge. JSTSP. WebSite: www.zerospeech.com

Textless project at Meta

Blog post: https://ai.facebook.com/blog/textless-nlp-generating-expressive-speech-from-raw-audio/ and https://ai.facebook.com/blog/generating-chit-chat-including-laughs-yawns-ums-and-other-nonverbal-cues-from-raw-audio/ <u>Review paper.</u> In progress!

<u>Textless library: https://github.com/facebookresearch/textlesslib</u> Samples, papers and code: https://speechbot.github.io

Self supervised audio representations

Review paper: https://arxiv.org/abs/2205.10643

Speech to speech translation

Blog Post: https://ai.facebook.com/blog/advancing-direct-speech-to-speech-modeling-with-discrete-units/

New spoken dialogue dataset collection: FISHER 2.0

ongoing

Xuan Nga Cao

Ewan Dunbar

Andrea Santos

Emmanuel Dupoux

Evgeny Morgane Kharitonov Rivière

Tu Anh Nguyen

Jade Copet

Catherine Urban

Gwendal Virlet

Mathieu Bernard

Nick Hamilakis

Marianne Metais

Benoit Sagot

Maureen de Seyssel

Robin Algayres

Marvin Lavechin

Alex Cristia

Cristia Guillaume Wisniewski

Abdelrahman Mohamed

Kushal Lakhotia

Wei-Ning Hsu

Yossef Mordechay Adi

Adam Polyak

Ann Lee

Juan Pino Gabriel Synnaeve

Thanks